Anticipated Motor Replacement

Methodology/Methodologies

PA lead (Organisation)

This project has received funding from the Horizon 2020 programme under grant agreement n°890147. The content of this presentation reflects only the author's view. The European Commission is not responsible for any use that may be made of the information it contains.

- <u>Definition:</u>
 - Replacement of old inefficient electric motors before their end-of-life.
- <u>Scope:</u>
 - Sector: Industry / Tertiary
 - 3-Phase Motors in the scope of The Ecodesign Regulation (EC Regulation 2019/1781)
 - Only between 0,75kW and 1000kW (exclude "small motors")

- <u>Methodology:</u>
 - *Article* 7 =>

TFES =
$$n \times P_n \times h \times \left(\frac{1}{\eta_c} - \frac{1}{\eta_{he}}\right) \times LF \times 100$$

$$\text{TFES}_{VSD} = n \cdot \frac{P_n}{\eta_{he}} \cdot 100 \cdot h \cdot f_{VSD}$$

TFES	Total final energy savings [kWh/a]
TFES _{vsd}	Total final additional energy savings from VSD [kWh/a]
n	Number of motors replaced [dmnl]
Pn	Nominal power as indicated in the nameplate [kW]
h	Annual operating hours [h]
η_c	Efficiency of conventional motor [%]
η_{he}	Efficiency of high-efficiency motor [%]
LF	Load factor [dmnl]
f_{VSD}	Factor to account for additional savings generated by the installation of a variable speed control (VSD) [dmnl]

• Indicative values: Motor power and efficiency

Power range [kW]	Avg. Power	IE1-IE2 Avg	IE3	IE4
0,75 - 7,5	3.2	81.9	86.5	89.1
7,5 - 75	34.3	91.2	93.3	94.6
75 - 375	201.5	94.3	95.7	96.4
375 - 1000	587.5	94.5	95.9	96.6

• Indicative values: Load Factor and Lifetime

Load Factor	
Load factor	0.60
Lifetime of savings	[a]
Lifetime of savings	10 years

• Indicative values: annual operating hours

Type of activity	[h/a]
Industry, 1 shift, 5 days/week	1,920
Industry, 2 shifts, 5 days/week	3,840
Industry, 2 shifts, 6 days/week	4,608
Industry, 2 shifts, 7 days/week	5,376
Industry, 3 shifts, 5 days/week	5,760
Industry, 3 shifts, 6 days/week	6,912
Industry, 3 shifts, 7 days/week	8,064
Industry, 3 shift, continuously	8,760
Tertiary	1,480

• Indicative values: VSD average default savings factor

End-Use	f _{vsp}
Pumps	0.28
Fans	0.28
Air Compressors	0.12
Cooling compressors	0.12
Conveyors	0.12
Other Motors	0.12

- <u>Methodology:</u>
 - Article 3 =>

$$EPEC = FEC_{Baseline} \cdot \sum_{ec} (share_{ec,Baseline} \cdot f_{PE,ec}) - FEC_{Action} \cdot \sum_{ec} (share_{ec,Action} \cdot f_{PE,ec})$$

EPEC	Effect on primary energy consumption [kWh/a]
FEC	Annual final energy consumption [kWh/a]
share _{ec}	Share of final energy carrier on final energy consumption [dmnl]
f _{PE,ec}	Final to primary energy conversion factor of the used energy carrier [dmnl]
Baseline	Index for the baseline situation of the action
Action	Index for the situation after the implementation of the action
ec	Index of energy carrier

- <u>Methodology:</u>
 - Greenhouse gas savings =>

$$GHGSAV = \left[FEC_{Baseline} \cdot \sum_{ec} (share_{ec,Baseline} \cdot f_{GHG,ec}) - FEC_{Action} \cdot \sum_{ec} (share_{ec,Action} \cdot f_{GHG,ec}) \right] * 10^{-6}$$

GHGSAV	Greenhouse gas savings [t CO ₂ e p.a.]
FEC	Annual final energy consumption [kWh/a]
share	Share of final energy carrier on final energy consumption [dmnl]
f _{GHG}	Emission factor of final energy carrier [t CO ₂ /kWh]
Baseline	Index for the baseline situation of the action
Action	Index for the situation after implementation of the action
ec	Index of energy carrier