

Complementary measures for building renovations

Jiří Karásek

Complementary measures for renovations

- Most residential building retrofits only achieve shallow renovation standards.
- Shallow renovation results in **less than 60% energy consumption savings** based on deep renovation definitions.
- Limited Financial Support:
 - Complementary measures do not currently receive financial support due to the mandatory 30% savings threshold.
 - Financial incentives mainly focus on primary measures.
- Untapped Energy Saving Potential:
 - Complementary measures are applicable to more than 50% of buildings.

Active identification and support of complementary measures more buildings can reach the deep energy standard.

Complementary measures for renovations

- Contribution to energy efficiency, comfort and sustainability
- Increasing the overall benefit of renovation projects

Complementary measures go beyond primary renovation measures and optimize energy performance and occupant well-being.

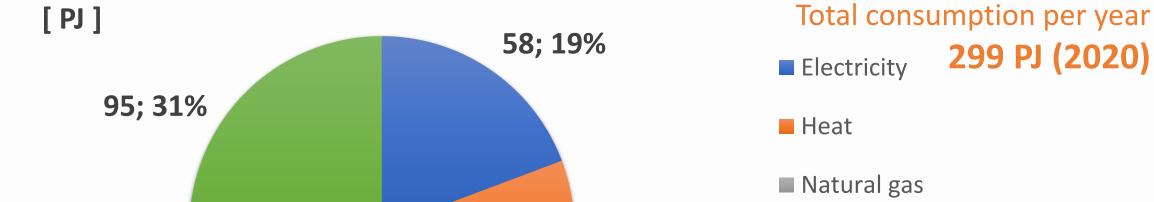
They address specific aspects of building systems and operations to maximise energy savings and reduce environmental impact.

Benefits of Complementary Measures:

- Energy Efficiency
- Comfort Enhancement
- Sustainability
- Future-Proofing

Examples of Complementary Measures:

- Building envelope improvements
- HVAC system upgrades
- Lighting upgrades
- Renewable energy integration
- Smart building technologies
- Indoor air quality enhancements
- Water efficiency measures



Czech case study

Final consumption – Households (CZ)

Households

78; **26**%

41; 14%

- Solid fuels
- Liquid fuels
- Renewable resources

Source: the CZSO, Energo 2015, Energo 2021

27; 9%

2; 1%

Czech case study Dwellings and the method of their insulation

Indicator	Year				Index [%]
	2015		2021		2021/2015
	Number	%	Number	%	2021/2015
Total	4 304 173	-	4 481 967	-	104.1
Wall insulation	2 024 443	47.0	2 360 798	52.7	116.6
Roof insulation	1 447 098	33.6	1 504 283	33.6	104.0
Insulated windows	3 245 828	75.4	3 440 678	76.8	106.0
Not insulated	810 967	18.8	672 927	15.0	83.0

¹⁾ the number and proportion of one specific method of insulation of flats out of the total number of flats is indicated, regardless of other methods of insulation

Source: the CZSO, Energo 2015, Energo 2021

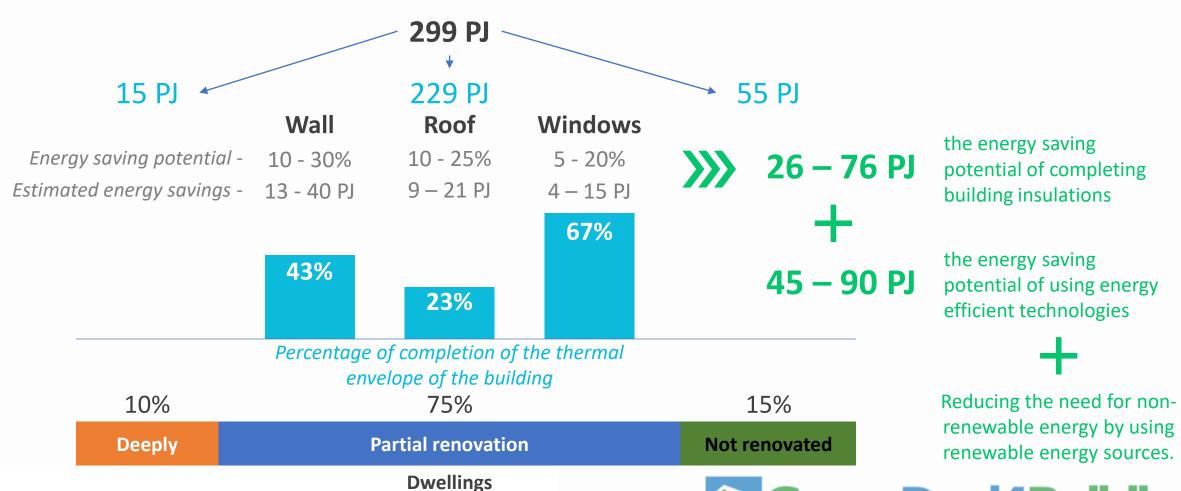
Czech case study Step-by-step retrofit

Retrofitting components:

- 1) Building assessment, planning
- 2) Energy efficiency of the building envelope
 Insulation of roof, walls, replacement of windows

 20-30 % energy savings for heating
- 3) Energy efficient technologies

 Heating, cooling, ventilation system


 20-40 % energy savings
- 4) Lighting retrofit 50-75 % electricity savings for lighting
- 5) Use of renewable energy sources
- 6) Monitoring and optimisation

Czech case study

Estimation of energy savings

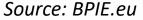
Green Deal 4 Buildings

Building Renovation Passports

Benefits of BRPs:

- Informed Decision-Making
- Risk Reduction
- Cost Optimization
- Improving Energy Efficiency

EXAMPLES:


FLANDERS (BE) – Woningpas

FRANCE – Passeport Efficacité Energétique

GERMANY – Individueller Sanierungsfahrplan (iSFP)

Valuable tool for:

- building owners
- facility managers
- policymakers

Discussion

- Additionality
- Calculation formula
- Avoiding double-counting

