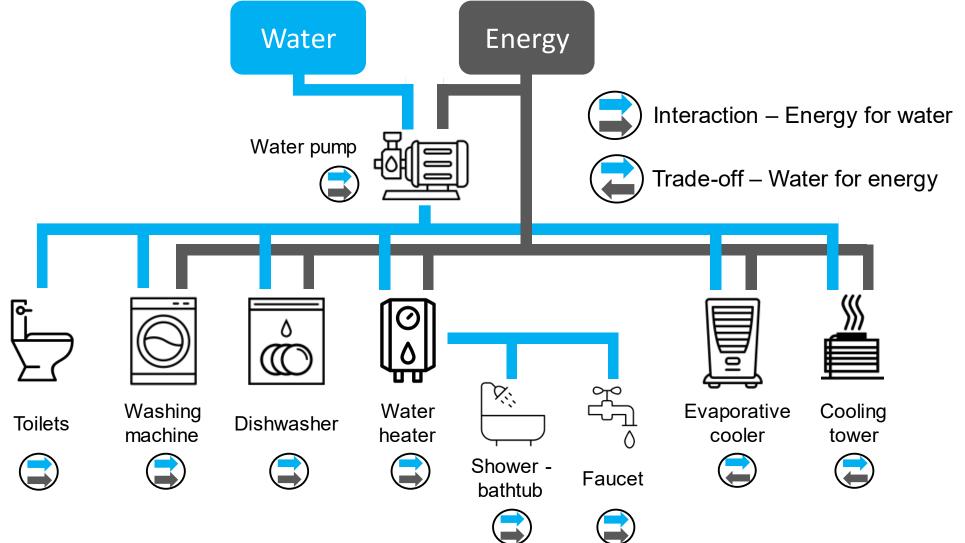
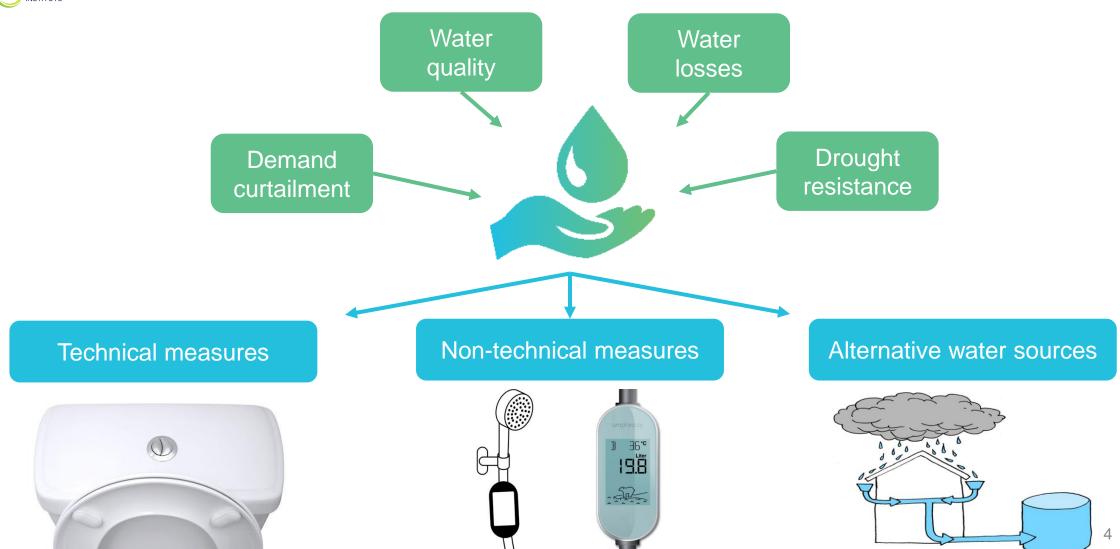


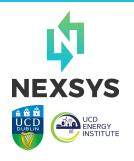
Evaluating water-related energy savings within buildings: insights from research studies

Hugo Jacque – streamSAVE+ Dialogue Meeting #02 – 14th November 2024

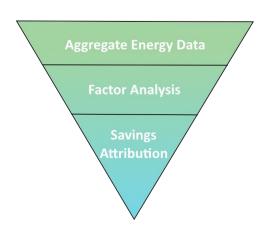


Energy in the urban water cycle




Water-related energy use in buildings

Water conservation in buildings



Top-down approach:

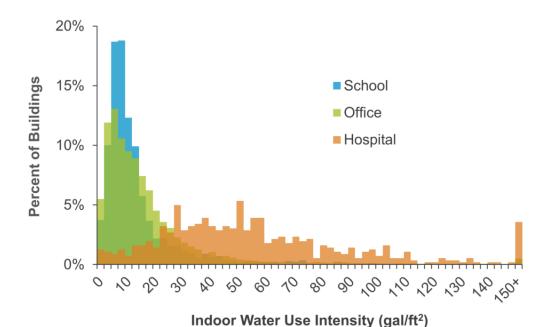
- Analysis of energy bills (annual, bimonthly, or monthly)
 - Ex-post approach
 - Building level
 - Sensitive data
 - Source: energy utilities/providers or building owners
 - Uncertainties due to influence of other factors: weather, occupancy, fittings replacement, etc. (Cabrera et al., 2024)

Bottom-up approach:

- Evaluate energy savings per end-use
 - 1. Estimate the volume of water saved
 - 2. Determine the related energy savings

Demand

Calculation

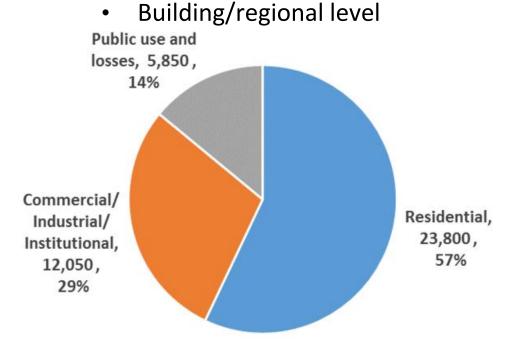

Water Savings Per End-Uses

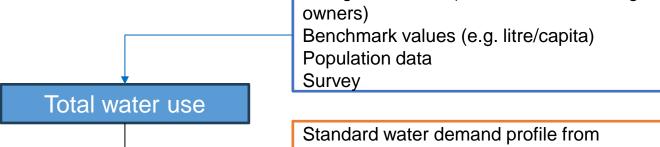
Nater Consumption Breakdown

Total water use

- **Ex-ante water savings calculation methods:**
 - Disaggregation approach:
 - Building/regional level

Range of water use intensity for some nonresidential buildings (ENERGY STAR, 2012) Billing/meter data (Water utilities/building owners) Benchmark values (e.g. litre/capita)


Population data

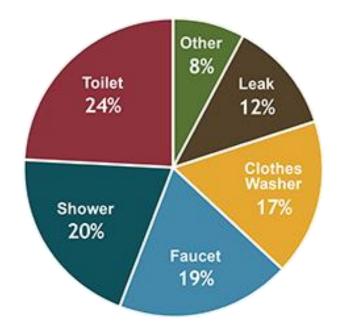

Survey

Ex-ante water savings calculation methods:

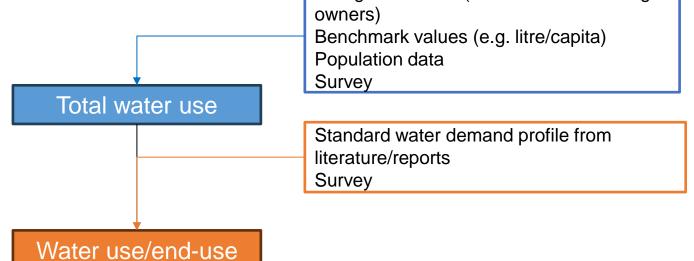
Disaggregation approach:


Survey

literature/reports


Billing/meter data (Water utilities/building

Water use/end-use


Public water supply deliveries in the United States (Water Resources Mission Area, 2019)

- Ex-ante water savings calculation methods:
 - Disaggregation approach:
 - Building/regional level

Water use breakdown in US residential buildings (US EPA, n.d.)

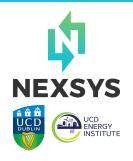
Billing/meter data (Water utilities/building

Hospitals

Office 0

Buildings

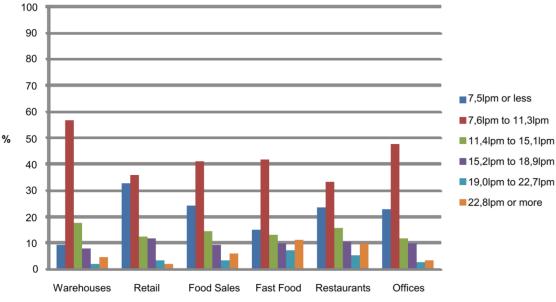
Schools


Estimating water-related energy savings

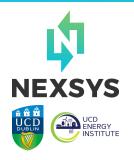
Ex-ante water savings calculation methods: Billing/meter data (Water utilities/building owners) Disaggregation approach: Benchmark values (e.g. litre/capita) Building/regional level Population data Survey Total water use 100% Standard water demand profile from Medical Equipment 80% literature/reports Pools Survey 0ther 60% Laundry Kitchen/Dishwashing Water use/end-use Landscaping Cooling and Heating 20% Domestic/Restroom

Water use breakdown in US non-residential buildings (WaterSense, 2012)

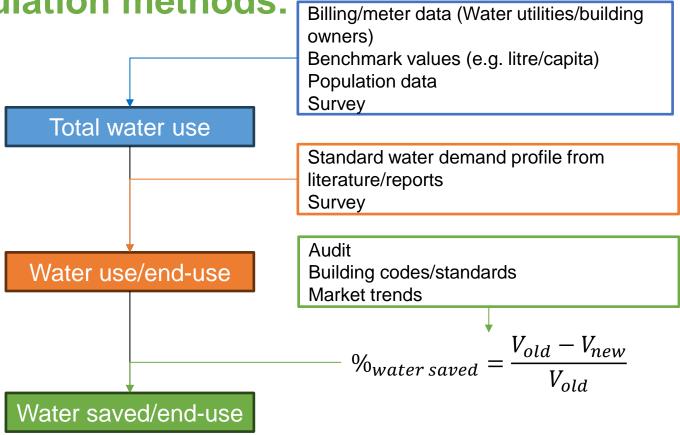
Restaurants

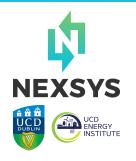

Hotels


Ex-ante water savings calculation methods:


Disaggregation approach:

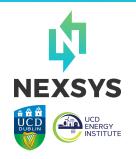
Building/regional level




Distribution of non-residential taps by flow rate (Mudgal et al., 2009)

- Ex-ante water savings calculation methods:
 - Disaggregation approach:
 - Building/regional level
 - Uncertainties:
 - Lack of local data
 - Water-saving device performance
 - Rebound effect

Ex-post water savings calculation methods:


- Historical data water use analysis
 - Building/regional level
 - Use of 'per capita' or detrended data for proper analysis
 - Source: water utilities/buildings owners
 - Assumption: reduction only due to implemented conservation measures
 - No information on water savings per end-use
- Market penetration analysis
 - National level
 - Investigate stock and sales of water-using products
 - Adopted to report progress of WaterSense (USA) and WELS (Australia) programmes
 - Source: manufacturers, market/programme/association reports, research article, population data

BAU Scenario:
Stock and sales
estimated from market
trends prior programme

Programme Scenario:
Stock and sales
estimated from
manufacturers data

Water consumption (WC)
= behaviour * stock * flow

Water saved= $WC_{BAU} - WC_{Programme}$

Energy savings calculation methods:

- Water heating energy use:
 - 1. Estimate volume of hot water use per end-use

Water heater

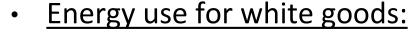
- 2. Estimate energy use to heat this volume of water:
 - Building level: use of the WHAM model (Lutz et al., 1998)

$$E (Btu/day) = V * \rho * C_p (T_{tank} - T_{in}) * \left(1 - \frac{UA * (T_{tank} - T_{amb})}{P_{on}}\right) + 24 * UA * (T_{tank} - T_{amb})$$

Assumption based on local context and data from literature

Derived from sales and stock data for hot water systems

• National level: simplified model, e.g. Institute for Sustainable Future (2018):


$$gas\ use\ (GJ) = water\ demand\ (ML) \times hot\ water\ fraction \times energy\ required\ to\ heat\ hot\ water\ \left(\frac{GJ}{ML}\right)$$

$$\times\ average\ gas\ hot\ water\ efficiency\ \left(\frac{GJ}{GJ}\right) \times gas\ fraction\ of\ hot\ water\ stock$$

 Uncertainties: data might not be nationally representative, regional and seasonal variation, variability in hot water piping, cannot account for heat losses

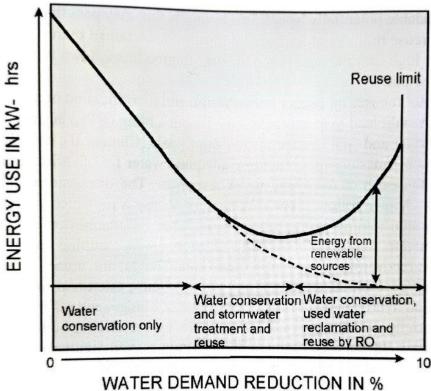
Energy savings calculation methods:

- Pumping energy use:
 - Generally not calculated due to negligible impact
 - Highly site dependent (pumping requirement, efficiency, system configuration and size, etc.)

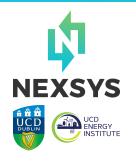
- Fraction of white goods having hot water connection determined from stock and sales data
- Energy use data available from manufacturers' catalogues

Water pump

Washing machine

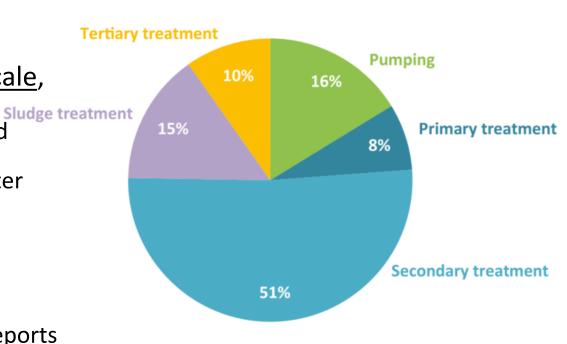


Dishwasher

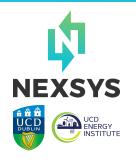


The case of alternative water sources:

- Difficult to quantify current or potential water saving at regional scale
- Energy savings achieved at urban water cycle scale, usually not building scale:
 - Energy inputs are required in buildings to treat and pump rainwater/greywater
 - End-uses considered are more commonly cold water uses (e.g. toilet flushing)



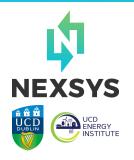
The relation of water demand reduction to energy use at the building scale (Novotny et al., 2010)



The case of alternative water sources:

- Difficult to quantify current or potential water saving at regional scale
- Energy savings achieved at <u>urban water cycle scale</u>, usually <u>not building scale</u>:
 - Energy inputs are required in buildings to treat and pump rainwater/greywater
 - End-uses considered are more commonly cold water uses (e.g. toilet flushing)
- Energy savings calculations methods for water supply and wastewater treatment:
 - Calculate energy intensity of local water systems (kWh/m³)
 - Data sources: water and energy utilities' data or reports
 - Uncertainty: seasonal variation of energy intensity, efficiency of water systems can be impacted by water conservation, volume of water/wastewater is not the only determining factor energy use

Typical energy consumption in a wastewater treatment facility (Kęsicki et al., 2016)

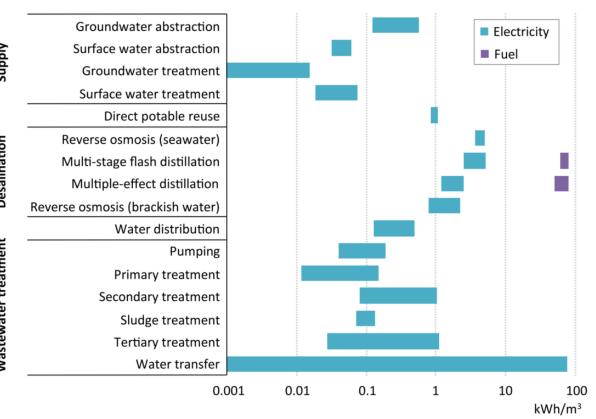


Indicative value of energy savings

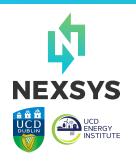
Energy savings metric:

$$E_{savings}(kWh/m^3) = \frac{Total\ energy\ saved\ (kWh)}{Total\ water\ saved\ (m^3)}$$

- Considering savings in the <u>whole urban water cycle</u>: E_{savings} ~ 30 kWh/m³
- End-use considered: hot or cold water?
- Energy use considered: water supply, building, wastewater treatment?



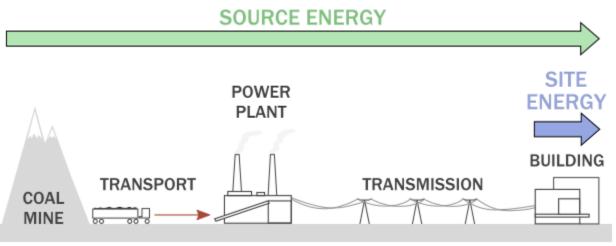
Indicative value of energy savings

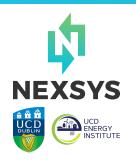

Energy savings metric:

$$E_{savings}(kWh/m^3) =$$

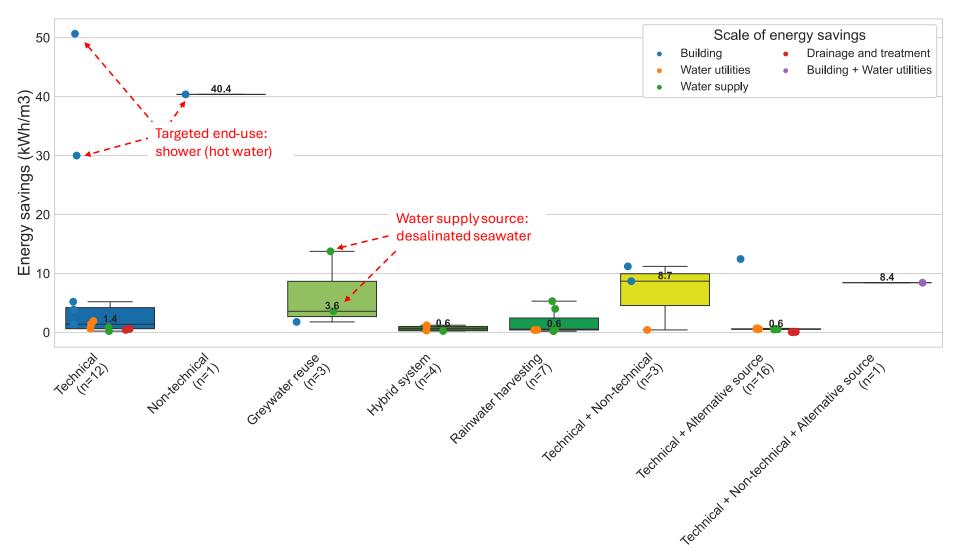
- Considering savings in the <u>whole url</u>
- End-use considered: hot or cold wa
- Energy use considered: water suppl
- Factors influencing E_{savings}:
 - Water heating efficiency standards
 - Energy calculation method
 - Building insulation standards
 - Water supply source
 - City/region topography
 - Wastewater treatment process and efficiency

Energy use for various processes in the water sector (Kęsicki et al., 2016)




Indicative value of energy savings

Energy savings metric:


$$E_{savings}(kWh/m^3) = \frac{Total\ energy\ saved\ (kWh)}{Total\ water\ saved\ (m^3)}$$

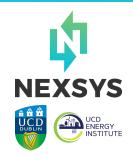

- Considering savings in the <u>whole urban water cycle</u>: E_{savings} ~ 30 kWh/m³
- End-use considered: hot or cold water?
- Energy use considered: water sup
- Factors influencing E_{savings}:
 - Water heating efficiency standards
 - Energy calculation method
 - Building insulation standards
 - Water supply source
 - City/region topography
 - Wastewater treatment process and eff
 - If using source energy instead of site energy:
 - Energy source
 - Grid efficiency

Energy savings from research studies

Conclusions

- Most of the energy in the urban water cycle is used in buildings for water heating
- Conservation actions targeting <u>hot water end-use</u> have highest energy savings
- Savings in the range of 30 kWh/m³ observed for comprehensive conservation programmes
- Energy saving ratio should be used with caution
- Major source of data for water-related energy savings:
 - Market data/report (trend, stock, sales, penetration) and standards/codes for:
 - Water-using products
 - Water heating systems
 - Water consumption data, e.g. benchmark values (litre/capita, litre/use, etc.), demand profile, etc., from water authorities and research

Thank you



Further reading

- Chen, Y., Fuchs, H., Schein, J., Franco, Victor., Stratton, H., Dunham, C. (2020). Calculating Average Hot Water Mixes of Residential Plumbing Fittings.
- Fyfe, J., McKibbin, J., Mohr, S., Madden, B., Turner, A., Ege, C., (2015). Evaluation of the Environmental Effects of the WELS Scheme, report prepared for the Australian Commonwealth Government Department of the Environment by the Institute for Sustainable Futures, University of Technology, Sydney.
- Institute for Sustainable Future (2018). Evaluation of the Environmental and Economic Impacts of the WELS Scheme, Prepared for: Australian Government Department of Agriculture and Water Resources.
- Schein, J., Chan, P., Chen, Y., Dunham, C., Fuchs, H., Letschert, V., . . . Williams, A. (2019). Methodology for the National Water Savings Models- Indoor Residential and Commercial/Institutional Products, and Outdoor Residential Products. Water Sci Technol Water Supply, 19(3), 879-890. doi:10.2166/ws.2018.136
- WaterSense (2012), Methodology and Assumptions for Estimating WaterSense® Annual Accomplishments. Retrieved from: https://www.epa.gov/sites/default/files/2017-03/documents/ws-aboutus-accomplishments-methodology.pdf

References

- Cabrera, D. J., Njem Njem, H., Bertholet, J.-L., & Patel, M. K. (2023). Simple solutions first—energy savings for domestic hot water through flow restrictors. Energy Efficiency, 17(1). doi:10.1007/s12053-023-10172-y
- ENERGY STAR (2012). Water Use Traciking. Portfolio Manager
- Escriva-Bou, A., Lund, J. R., & Pulido-Velazquez, M. (2018, July 3). Saving Energy From Urban Water Demand Management. Water Resources Research, 54, 4265-4276. doi:10.1029/2017WR021448
- Institute for Sustainable Future (2018). Evaluation of the Environmental and Economic Impacts of the WELS Scheme, Prepared for: Australian Government Department of Agriculture and Water Resources.
- Kęsicki, F., Walton, M. A., Gould, T., Cozzi, L., Naceur, K. B., Hugues, P., . . . Coon, T. (2016). Water Energy Nexus Excerpt from the World Energy Outlook 2016. Paris: International Energy Agency.
- Lutz, J.; Whitehead, C.D.; Lekov, A.; Winiarski, D.; Rosenquist, G. WHAM: A simplified energy consumption equation for water heaters. In Proceedings of the ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, USA, 23 August 1998.
- Mudgal, S., Benito, P., Jean-Baptiste, V., Dias, D., Kong, M., Inman, D., & Muro, M. (2009). Study On Water Efficiency Standards. Bio Intelligence Service and Cranfield University. European Commission (DG ENV).
- Novotny, V., Ahern, J., & Brown, P. (2010). Chapter VIII: Energy and Urban Water Systems Towards Net Zero Carbon Footprint. In V. Novotny, J. Ahern, & P. Brown, Water Centric Sustainable Communities: Planning, Retrofitting, and Building the Next Urban Environment (pp. 358-426). John Wiley & Sons.
- Plappally, A., & Lienhard, J. (2012, September). Energy requirements for water production, treatment, end use, reclamation, and disposal. Renewable and Sustainable Energy Reviews, 16(7), 4818-4848. doi:10.1016/j.rser.2012.05.022
- US EPA (n.d.). How We Use Water, United States Environmental Protection Agency. Available online: https://www.epa.gov/watersense/how-we-use-water
- Water Resources Mission Area. (2019). Water Use in the United States: Public Supply Water Use. USGS
- WaterSense. (2012). WaterSense at Work: Best Management Practices for Commercial and Institutional Facilities. U.S. Environmental Protection Agency. U.S. Environmental Protection Agency.